cd07185, OmpA_C-like, Peptidoglycan binding domains similar to the C-terminal domain of outer-membrane protein OmpA. OmpA-like domains (named after the C-terminal domain of Escherichia coli OmpA protein) have been shown to non-covalently associate with peptidoglycan, a network of glycan chains composed of disaccharides, which are crosslinked via short peptide bridges. Well-studied members of this family include the Escherichia coli outer membrane protein OmpA, the Escherichia coli lipoprotein PAL, Neisseria meningitdis RmpM, which interact with the outer membrane, as well as the Escherichia coli motor protein MotB, and the Vibrio flagellar motor proteins PomB and MotY, which interact with the inner membrane.
pfam01242, PTPS, 6-pyruvoyl tetrahydropterin synthase. 6-Pyruvoyl tetrahydrobiopterin synthase catalyzes the conversion of dihydroneopterin triphosphate to 6-pyruvoyl tetrahydropterin, the second of three enzymatic steps in the synthesis of tetrahydrobiopterin from GTP. The functional enzyme is a hexamer of identical subunits.
cd07398, MPP_YbbF-LpxH, Escherichia coli YbbF/LpxH and related proteins, metallophosphatase domain. YbbF/LpxH is an Escherichia coli UDP-2,3-diacylglucosamine hydrolase thought to catalyze the fourth step of lipid A biosynthesis, in which a precursor UDP-2,3-diacylglucosamine is hydrolyzed to yield 2,3-diacylglucosamine 1-phosphate and UMP. YbbF belongs to the metallophosphatase (MPP) superfamily. MPPs are functionally diverse, but all share a conserved domain with an active site consisting of two metal ions (usually manganese, iron, or zinc) coordinated with octahedral geometry by a cage of histidine, aspartate, and asparagine residues. The MPP superfamily includes: Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases, and acid sphingomyelinases (ASMases). The conserved domain is a double beta-sheet sandwich with a di-metal active site made up of residues located at the C-terminal side of the sheets. This domain is thought to allow for productive metal coordination.
cd13136, MATE_DinF_like, DinF and similar proteins, a subfamily of the multidrug and toxic compound extrusion (MATE)-like proteins. Escherichia coli DinF is a membrane protein that has been found to protect cells against oxidative stress and bile salts. The expression of DinF is regulated as part of the SOS system. It may act by detoxifying oxidizing molecules that have the potential to damage DNA. Some member of this family have been reported to enhance the virulence of plant pathogenic bacteria by enhancing their ability to grow in the presence of toxic compounds. Proteins from the MATE family are involved in exporting metabolites across the cell membrane and are often responsible for multidrug resistance (MDR).
pfam00583, Acetyltransf_1, Acetyltransferase (GNAT) family. This family contains proteins with N-acetyltransferase functions such as Elp3-related proteins.
cd07185, OmpA_C-like, Peptidoglycan binding domains similar to the C-terminal domain of outer-membrane protein OmpA. OmpA-like domains (named after the C-terminal domain of Escherichia coli OmpA protein) have been shown to non-covalently associate with peptidoglycan, a network of glycan chains composed of disaccharides, which are crosslinked via short peptide bridges. Well-studied members of this family include the Escherichia coli outer membrane protein OmpA, the Escherichia coli lipoprotein PAL, Neisseria meningitdis RmpM, which interact with the outer membrane, as well as the Escherichia coli motor protein MotB, and the Vibrio flagellar motor proteins PomB and MotY, which interact with the inner membrane.
cd03682, ClC_sycA_like, ClC sycA-like chloride channel proteins. This ClC family presents in bacteria, where it facilitates acid resistance in acidic soil. Mutation of this gene (sycA) in Rhizobium tropici CIAT899 causes serious deficiencies in nodule development, nodulation competitiveness, and N2 fixation on Phaseolus vulgaris plants, due to its reduced ability for acid resistance. This family is part of the ClC chloride channel superfamiy. These proteins catalyse the selective flow of Cl- ions across cell membranes and Cl-/H+ exchange transport. These proteins share two characteristics that are apparently inherent to the entire ClC chloride channel superfamily: a unique double-barreled architecture and voltage-dependent gating mechanism. The gating is conferred by the permeating anion itself, acting as the gating charge.
TIGR00644, recJ, single-stranded-DNA-specific exonuclease RecJ. All proteins in this family are 5'-3' single-strand DNA exonucleases. These proteins are used in some aspects of mismatch repair, recombination, and recombinational repair. [DNA metabolism, DNA replication, recombination, and repair].
cd09604, M1_APN_like, Peptidase M1 family similar to aminopeptidase N catalytic domain. This family contains bacterial M1 peptidases with smilarity to the catalytic domain of aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease belonging to the M1 gluzincin family. APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and, in higher eukaryotes, is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation, thus considered a marker of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. APNs are also present in many pathogenic bacteria and represent potential drug targets. Some APNs have been used commercially, such as one from Lactococcus lactis used in the food industry. APN also serves as a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs have also been extensively studied as putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established.
pfam13640, 2OG-FeII_Oxy_3, 2OG-Fe(II) oxygenase superfamily. This family contains members of the 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily.
The bacterium proteins that are colored denote the protein is present at specific phage-related keywords (such as 'capsid', 'head', 'integrase', 'plate', 'tail', 'fiber', 'coat', 'transposase', 'portal', 'terminase', 'protease' or 'lysin' and 'tRNA')