cd06302, PBP1_LsrB_Quorum_Sensing-like, periplasmic binding domain of autoinducer-2 (AI-2) receptor LsrB from Salmonella typhimurium and its close homologs. Periplasmic binding domain of autoinducer-2 (AI-2) receptor LsrB from Salmonella typhimurium and its close homologs from other bacteria. The members of this group are homologous to a family of periplasmic pentose/hexose sugar-binding proteins that function as the primary receptors for chemotaxis and transporters of many sugar based solutes in bacteria and archaea and that are a member of the type 1 periplasmic binding protein superfamily. LsrB, which is part of the ABC transporter complex LsrABCD, binds a chemically distinct form of the AI-2 signal that lacks boron, in contrast to the Vibrio harveyi AI-2 signaling molecule that has an unusual furanosyl borate diester. Hence, many bacteria coordinate their gene expression according to the local density of their population by producing species specific AI-2. This process of quorum sensing allows LsrB to function as a periplasmic AI-2 binding protein in interspecies signaling.
cd06173, MFS_MefA_like, Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of transporters. This family is composed of Streptococcus pyogenes macrolide efflux protein A (MefA) and similar transporters, many of which remain uncharacterized. Some members may be multidrug resistance (MDR) transporters, which are drug/H+ antiporters (DHAs) that mediate the efflux of a variety of drugs and toxic compounds, conferring resistance to these compounds. MefA confers resistance to 14-membered macrolides including erythromycin and to 15-membered macrolides. It functions as an efflux pump to regulate intracellular macrolide levels. The MefA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement.
TIGR02635, putative_xylose_isomerase, L-rhamnose isomerase, Streptomyces subtype. This clade of sequences is closely related to the L-rhamnose isomerases found in Pseudomonas stutzeri and in a number of the Rhizobiales (TIGR02629). The genes of the family represented here are found in similar genomic contexts which contain genes apparently involved in rhamnose catabolism such as rhamnulose-1-phosphate aldolase (TIGR02632), sugar kinases, and sugar transporters. [Energy metabolism, Sugars].
cd06579, TM_PBP1_transp_AraH_like, Transmembrane subunit (TM) of Escherichia coli AraH and related proteins. E. coli AraH is the TM of a Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporter involved in the uptake of the monosaccharide arabinose. This group also contains E. coli RbsC, AlsC, and MglC, which are TMs of other monosaccharide transporters, the ribose transporter, the D-allose transporter and the galactose transporter, respectively. The D-allose transporter may also be involved in low affinity ribose transport. These transporters generally bind type 1 PBPs. PBP-dependent ABC transporters consist of a PBP, two TMs, and two cytoplasmic ABCs, and are mainly involved in importing solutes from the environment. The solute is captured by the PBP, which delivers it to a gated translocation pathway formed by the two TMs. The two ABCs bind and hydrolyze ATP and drive the transport reaction. Proteins in this subgroup have a single TM which homodimerizes to generate the transmembrane pore.
TIGR03560, F420_Rv1855c, probable F420-dependent oxidoreductase, Rv1855c family. Coenzyme F420 has a limited phylogenetic distribution, including methanogenic archaea, Mycobacterium tuberculosis and related species, Colwellia psychrerythraea 34H, Rhodopseudomonas palustris HaA2, and others. Partial phylogenetic profiling identifies protein subfamilies, within the larger family called luciferase-like monooxygenanases (pfam00296), that appear only in F420-positive genomes and are likely to be F420-dependent. This model describes one such subfamily, exemplified by Rv1855c from Mycobacterium tuberculosis. [Unknown function, Enzymes of unknown specificity].
pfam01555, N6_N4_Mtase, DNA methylase. Members of this family are DNA methylases. The family contains both N-4 cytosine-specific DNA methylases and N-6 Adenine-specific DNA methylases.
TIGR01994, Iron-sulfur_cluster_assembly_scaffold_protein_IscU, SUF system FeS assembly protein, NifU family. Three iron-sulfur cluster assembly systems are known so far. ISC is broadly distributed while NIF tends to be associated with nitrogenase in nitrogen-fixing bacteria. The most recently described is SUF, believed to be important to maintain the function during aerobic stress of enzymes with labile Fe-S clusters. It is fairly widely distributed. This family represents one of two different proteins proposed to act as a scaffold on which the Fe-S cluster is built and from which it is transferred. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other].
TIGR01979, Probable_cysteine_desulfurase, cysteine desulfurases, SufSfamily. This model represents a subfamily of NifS-related cysteine desulfurases involved in FeS cluster formation needed for nitrogen fixation among other vital functions. Many cysteine desulfurases are also active as selenocysteine lyase and/or cysteine sulfinate desulfinase. This subfamily is associated with the six-gene SUF system described in E. coli and Erwinia as an FeS cluster formation system during oxidative stress. The active site Cys is this subfamily resembles GHHC with one or both His conserved. [Biosynthesis of cofactors, prosthetic groups, and carriers, Other].
cd06579, TM_PBP1_transp_AraH_like, Transmembrane subunit (TM) of Escherichia coli AraH and related proteins. E. coli AraH is the TM of a Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporter involved in the uptake of the monosaccharide arabinose. This group also contains E. coli RbsC, AlsC, and MglC, which are TMs of other monosaccharide transporters, the ribose transporter, the D-allose transporter and the galactose transporter, respectively. The D-allose transporter may also be involved in low affinity ribose transport. These transporters generally bind type 1 PBPs. PBP-dependent ABC transporters consist of a PBP, two TMs, and two cytoplasmic ABCs, and are mainly involved in importing solutes from the environment. The solute is captured by the PBP, which delivers it to a gated translocation pathway formed by the two TMs. The two ABCs bind and hydrolyze ATP and drive the transport reaction. Proteins in this subgroup have a single TM which homodimerizes to generate the transmembrane pore.
pfam00300, His_Phos_1, Histidine phosphatase superfamily (branch 1). The histidine phosphatase superfamily is so named because catalysis centers on a conserved His residue that is transiently phosphorylated during the catalytic cycle. Other conserved residues contribute to a 'phosphate pocket' and interact with the phospho group of substrate before, during and after its transfer to the His residue. Structure and sequence analyses show that different families contribute different additional residues to the 'phosphate pocket' and, more surprisingly, differ in the position, in sequence and in three dimensions, of a catalytically essential acidic residue. The superfamily may be divided into two main branches. The larger branch 1 contains a wide variety of catalytic functions, the best known being fructose 2,6-bisphosphatase (found in a bifunctional protein with 2-phosphofructokinase) and cofactor-dependent phosphoglycerate mutase. The latter is an unusual example of a mutase activity in the superfamily: the vast majority of members appear to be phosphatases. The bacterial regulatory protein phosphatase SixA is also in branch 1 and has a minimal, and possible ancestral-like structure, lacking the large domain insertions that contribute to binding of small molecules in branch 1 members.
cd11332, AmyAc_OligoGlu_TS, Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), trehalose synthase (also called maltose alpha-D-glucosyltransferase), and related proteins. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Trehalose synthase (EC 5.4.99.16) catalyzes the isomerization of maltose to produce trehalulose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd13586, PBP2_Maltose_binding_like, The periplasmic-binding component of ABC transport systems specific for maltose and related polysaccharides; possess type 2 periplasmic binding fold. This subfamily represents the periplasmic binding component of ABC transport systems involved in uptake of polysaccharides including maltose, maltodextrin, and cyclodextrin. Members of this family belong to the type 2 periplasmic-binding fold superfamily. PBP2 is comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The majority of PBP2 proteins function in the uptake of small soluble substrates in eubacteria and archaea. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis.
cd03453, SAV4209_like, SAV4209_like. Similar in sequence to the Streptomyces avermitilis SAV4209 protein, with a hot dog fold that is similar to those of (R)-specific enoyl-CoA hydratase, the peroxisomal Hydratase-Dehydrogenase-Epimerase (HDE) protein, and the fatty acid synthase beta subunit.
pfam01638, HxlR, HxlR-like helix-turn-helix. HxlR, a member of this family, is a DNA-binding protein that acts as a positive regulator of the formaldehyde-inducible hxlAB operon in Bacillus subtilis.
pfam06217, GAGA_bind, GAGA binding protein-like family. This family includes gbp a protein from Soybean that binds to GAGA element dinucleotide repeat DNA. It seems likely that the this domain mediates DNA binding. This putative domain contains several conserved cysteines and a histidine suggesting this may be a zinc-binding DNA interaction domain.
0.000810118
CP026949.1|AWB85536.1|424939_425380_-|glyoxalase
gnl|CDD|226134
COG3607, COG3607, Predicted lactoylglutathione lyase [General function prediction only].
cd14014, STKc_PknB_like, Catalytic domain of bacterial Serine/Threonine kinases, PknB and similar proteins. STKs catalyze the transfer of the gamma-phosphoryl group from ATP to serine/threonine residues on protein substrates. This subfamily includes many bacterial eukaryotic-type STKs including Staphylococcus aureus PknB (also called PrkC or Stk1), Bacillus subtilis PrkC, and Mycobacterium tuberculosis Pkn proteins (PknB, PknD, PknE, PknF, PknL, and PknH), among others. S. aureus PknB is the only eukaryotic-type STK present in this species, although many microorganisms encode for several such proteins. It is important for the survival and pathogenesis of S. aureus as it is involved in the regulation of purine and pyrimidine biosynthesis, cell wall metabolism, autolysis, virulence, and antibiotic resistance. M. tuberculosis PknB is essential for growth and it acts on diverse substrates including proteins involved in peptidoglycan synthesis, cell division, transcription, stress responses, and metabolic regulation. B. subtilis PrkC is located at the inner membrane of endospores and functions to trigger spore germination. Bacterial STKs in this subfamily show varied domain architectures. The well-characterized members such as S. aureus and M. tuberculosis PknB, and B. subtilis PrkC, contain an N-terminal cytosolic kinase domain, a transmembrane (TM) segment, and mutliple C-terminal extracellular PASTA domains. The PknB subfamily is part of a larger superfamily that includes the catalytic domains of other protein STKs, protein tyrosine kinases, RIO kinases, aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase.
4.5403e-87
CP026949.1|AWB85528.1|418962_419163_-|ferredoxin
gnl|CDD|379145
pfam13370, Fer4_13, 4Fe-4S single cluster domain of Ferredoxin I. Fer4_13 is a ferredoxin I from sulfate-reducing bacteria. Chemical sequence analysis suggests that this characteristic [4Fe-4S] cluster sulfur environment is widely distributed among ferredoxins.
cd05241, 3b-HSD-like_SDR_e, 3beta-hydroxysteroid dehydrogenases (3b-HSD)-like, extended (e) SDRs. Extended SDR family domains belonging to this subgroup have the characteristic active site tetrad and a fairly well-conserved NAD(P)-binding motif. 3b-HSD catalyzes the NAD-dependent conversion of various steroids, such as pregnenolone to progesterone, or androstenediol to testosterone. This subgroup includes an unusual bifunctional 3b-HSD/C-4 decarboxylase from Arabidopsis thaliana, and Saccharomyces cerevisiae ERG26, a 3b-HSD/C-4 decarboxylase, involved in the synthesis of ergosterol, the major sterol of yeast. It also includes human 3 beta-HSD/HSD3B1 and C(27) 3beta-HSD/ [3beta-hydroxy-delta(5)-C(27)-steroid oxidoreductase; HSD3B7]. C(27) 3beta-HSD/HSD3B7 is a membrane-bound enzyme of the endoplasmic reticulum, that catalyzes the isomerization and oxidation of 7alpha-hydroxylated sterol intermediates, an early step in bile acid biosynthesis. Mutations in the human NSDHL (NAD(P)H steroid dehydrogenase-like protein) cause CHILD syndrome (congenital hemidysplasia with ichthyosiform nevus and limb defects), an X-linked dominant, male-lethal trait. Mutations in the human gene encoding C(27) 3beta-HSD underlie a rare autosomal recessive form of neonatal cholestasis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid sythase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.
cd11338, AmyAc_CMD, Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
pfam01925, TauE, Sulfite exporter TauE/SafE. This is a family of integral membrane proteins where the alignment appears to contain two duplicated modules of three transmembrane helices. The proteins are involved in the transport of anions across the cytoplasmic membrane during taurine metabolism as an exporter of sulfoacetate. This family used to be known as DUF81.
pfam13452, MaoC_dehydrat_N, N-terminal half of MaoC dehydratase. It is clear from the structures of bacterial members of MaoC dehydratase, pfam01575, that the full-length functional dehydratase enzyme is made up of two structures that dimerize to form a whole. Divergence of the N- and C- monomers in higher eukaryotes has led to two distinct domains, this one and MaoC_dehydratas. However, in order to function as an enzyme both are required together.
pfam00478, IMPDH, IMP dehydrogenase / GMP reductase domain. This family is involved in biosynthesis of guanosine nucleotide. Members of this family contain a TIM barrel structure. In the inosine monophosphate dehydrogenases 2 CBS domains pfam00571 are inserted in the TIM barrel. This family is a member of the common phosphate binding site TIM barrel family.
pfam11706, zf-CGNR, CGNR zinc finger. This family consists of a C-terminal zinc finger domain. It seems likely to be DNA-binding given the conservation of many positively charged residues. The domain is named after a highly conserved motif found in many members of the family.
TIGR01073, ATP-dependent_DNA_helicase_PcrA, ATP-dependent DNA helicase PcrA. Designed to identify pcrA members of the uvrD/rep subfamily. [DNA metabolism, DNA replication, recombination, and repair].
pfam02261, Asp_decarbox, Aspartate decarboxylase. Decarboxylation of aspartate is the major route of beta-alanine production in bacteria, and is catalyzed by the enzyme aspartate decarboxylase EC:4.1.1.11 which requires a pyruvoyl group for its activity. It is synthesized initially as a proenzyme which is then proteolytically cleaved to an alpha (C-terminal) and beta (N-terminal) subunit and a pyruvoyl group. This family contains both chains of aspartate decarboxylase.
pfam09995, DUF2236, Uncharacterized protein conserved in bacteria (DUF2236). This domain, found in various hypothetical bacterial proteins, has no known function. This family contains a highly conserved arginine and histidine that may be active site residues for an as yet unknown catalytic activity.
cd06662, SURF1, SURF1 superfamily. Surf1/Shy1 has been implicated in the posttranslational steps of the biogenesis of the mitochondrially-encoded Cox1 subunit of cytochrome c oxidase (complex IV). Cytochrome c oxidase (complex IV), the terminal electron-transferring complex of the respiratory chain, is an assemblage of nuclear and mitochondrially-encoded subunits. Its assembly is mediated by nuclear encoded assembly factors, one of which is Surf1/Shy1. Mutations in human Surf1 are a major cause of Leigh syndrome, a severe neurodegenerative disorder.
pfam12823, DUF3817, Domain of unknown function (DUF3817). This domain is of unknown function. It is sometimes found adjacent to pfam07690 and pfam03176 which are both transporter domains.
cd08602, GDPD_ScGlpQ1_like, Glycerophosphodiester phosphodiesterase domain of Streptomycin coelicolor (GlpQ1) and similar proteins. This subfamily corresponds to the glycerophosphodiester phosphodiesterase domain (GDPD) present in a group of putative bacterial and eukaryotic glycerophosphodiester phosphodiesterases (GP-GDE, EC 3.1.4.46) similar to Escherichia coli periplasmic phosphodiesterase GlpQ, as well as plant glycerophosphodiester phosphodiesterases (GP-PDEs), all of which catalyzes the Ca2+-dependent degradation of periplasmic glycerophosphodiesters to produce sn-glycerol-3-phosphate (G3P) and the corresponding alcohols. The prototypes of this family include putative secreted phosphodiesterase encoded by gene glpQ1 (SCO1565) from the pho regulon in Streptomyces coelicolor genome, and in plants, two distinct Arabidopsis thaliana genes, AT5G08030 and AT1G74210, coding putative GP-PDEs from the cell walls and vacuoles, respectively.
cd06582, TM_PBP1_LivH_like, Transmembrane subunit (TM) of Escherichia coli LivH and related proteins. LivH is one of two TMs of the E. coli LIV-1/LS transporter, a Periplasmic Binding Protein (PBP)-dependent ATP-Binding Cassette (ABC) transporter involved in the uptake of branched-chain amino acids (AAs). These types of transporters generally bind type 1 PBPs. PBP-dependent ABC transporters consist of a PBP, two TMs, and two cytoplasmic ABCs, and are mainly involved in importing solutes from the environment. The solute is captured by the PBP, which delivers it to a gated translocation pathway formed by the two TMs. The two ABCs bind and hydrolyze ATP and drive the transport reaction. E. coli LivH forms a heterodimer with another TM, LivM, to generate the transmembrane pore. LivM is not included in this subgroup. The LIV-1/LS transporter is comprised of two TMs (LivM and LivH), two ABCs (LivG and LivF), and one of two alternative PBPs, LivJ (LIV-BP) or LivK (LS-BP). In addition to transporting branched-chain AAs including leucine, isoleucine and valine, the E. coli LIV-1/LS transporter is involved in the uptake of the aromatic AA, phenylalanine.